Grade 8 CRCT Review (Accelerated Math 1)

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Find the two square roots of the number 144.
a. $36,-36$
b. $72,-72$
c. $11,-11$
d. $12,-12$
\qquad 2. A square mosaic is made of small glass squares. If there are 196 small squares in the mosaic, how many are along an edge?
a. 98 squares
b. 49 squares
c. 14 squares
d. 16 squares
\qquad 3. A square room has a tiled floor with 81 square tiles. How many tiles are along an edge of the room?
a. 9 tiles
b. 11 tiles
c. 40 tiles
d. 20 tiles
\qquad 4. The square root $\sqrt{103}$ is between two integers. Name the integers.
a. 102,104
b. 15,16
c. 10,11
d. 25,26
\qquad 5. Elena needs to cut a square piece of wood with an area of 69 square inches. How long should the sides of the square be, rounded to the nearest tenth of an inch?
a. 7 in .
b. 8.3 in.
c. 34.5 in .
d. $\quad 17.3$ in.
\qquad 6. A chessboard is made of 64 small squares. Suppose a single square on a chessboard has an area of 6 square centimeters. How long is one side of the entire board, rounded to the nearest tenth of a centimeter?
a. 2.4 cm
b. $\quad 156.8 \mathrm{~cm}$
c. 9.8 cm
d. 19.6 cm
\qquad 7. Evaluate the expression $-4 \sqrt{-14+50}$. If necessary, round your answer to the nearest tenth.
a. 50
b. -24
c. 32
d. -28.3
\qquad 8. Classify the number $\frac{\sqrt{16}}{2}$ as rational or irrational.
a. irrational
b. rational
9. Classify the number $\frac{\sqrt{43}}{8}$ as rational, irrational, or not a real number.
a. irrational
b. not a real number
c. rational
10. Find a real number between 1_{5}^{3} and 1_{5}^{4}.
a. 1_{5}^{2}
b. 1_{15}^{1}
c. 1_{10}^{7}
d. 2_{4}^{1}
11. Write $(b)(b)(b)(b)(b)$ in exponential form.
a. 5^{b}
c. b^{-5}
b. b^{5}
d. b^{6}
12. Write $2 \times 2 \times 2 \times 2$ in exponential form.
a. 4^{2}
b. 2^{3}
c. 2^{5}
d. 2^{4}
13. Write 3 in exponential form.
a. 3^{0}
b. 1^{3}
c. 3^{1}
d. 3^{2}
14. Evaluate $(-2)^{2}$.
a. 0
b. 22
c. -4
d. 4
15. Evaluate 10^{-4} by extending the pattern in the table.

$\mathbf{1 0}^{\mathbf{2}}$	$\mathbf{1 0}^{\mathbf{1}}$	$\mathbf{1 0}^{\mathbf{0}}$	$\mathbf{1 0}^{\mathbf{- 1}}$	$\mathbf{1 0}^{-\mathbf{2}}$
$10 \cdot 10$	10	1	$\frac{1}{10}$	$\frac{1}{10 \times 10}$
100	10	1	$\frac{1}{10}=0.1$	$\frac{1}{100}=0.01$

a. 0.00001
b. 0.0001
c. 0.001
d. -40
16. Evaluate $(6)^{-2}$.
a. -36
b. $\quad 1$
c. $\begin{array}{r}1 \\ -36\end{array}$
d. 36
17. Evaluate $a^{x}-(b+c)^{y}$ for $a=4, b=2, c=8, x=-1$, and $y=-2$.
a. $\frac{1}{24}$
b. $\frac{3}{25}$
c. -96
d. $\frac{6}{25}$
18. Multiply. Write the product as a power.
$12^{5} \cdot 12^{2}$
a. 12^{10}
c. 12^{7}
b. Cannot combine
d. 12^{3}
19. Divide. Write the quotient as a power.
$\frac{13^{9}}{13^{5}}$
a. 13^{4}
c. 13^{14}
b. Cannot combine
d. 52
20. Simplify $\left(9^{9}\right)^{-8}$.
a. 9^{1}
b. 9^{-72}
c. 81^{-8}
d. 9^{17}
21. Write the number 6.54×10^{7} in standard notation.
a. 0.000000654
b. $6,540,000$
c. $65,400,000$
d. $654,000,000$
22. Write the number 9.91×10^{-6} in standard notation.
a. 0.0000991
b. $9,910,000$
c. 0.00000991
d. 0.000000991
23. Write the number 230,000 in scientific notation.
a. 0.230×10^{6}
b. 2.30×10^{6}
c. 2.3×10^{5}
d. 23.0×10^{4}
24. Write the number 0.000000001 in scientific notation.
a. 0.01×10^{-6}
b. 00.1×10^{-8}
c. 0.001×10^{-6}
d. 1.0×10^{-9}
25. Suppose a sheet of 100 stamps is 0.77 millimeters thick. If a stack of sheets contains 100,000 stamps, how many millimeters thick is the stack? Write the answer in scientific notation.
a. $\quad 7.7 \times 10^{4} \mathrm{~mm}$
b. $7.7 \times 10^{2} \mathrm{~mm}$
c. $77.0 \times 10^{1} \mathrm{~mm}$
d. $0.77 \times 10^{3} \mathrm{~mm}$
26. If an average grape weighs 4.87 grams and a company purchases $1,000,000$ grapes, how much will the grape shipment weigh in kilograms? Write the answer in scientific notation.
a. $4.87 \times 10^{6} \mathrm{~kg}$
b. $48.7 \times 10^{2} \mathrm{~kg}$
c. $4.87 \times 10^{3} \mathrm{~kg}$
d. $0.487 \times 10^{4} \mathrm{~kg}$
27. The attendance at a parade was 6.73×10^{4} people. The attendance at a rally was 6.75×10^{4} people. Which event had the higher attendance?
a. rally
b. parade
28. The attendance at a college football game was 1.27×10^{5} people. The attendance at a World Cup soccer match was 1.22×10^{5} people. Which event had the higher attendance?
a. soccer match
b. football game
29. Which is a Venn diagram that shows the relationship between the sets? primary colors: \{red, green, blue\} colors in the American flag: \{red, white, blue\}
a.

c.

b.

d.

30. Use the Venn diagram to find $A \cap B$.

a. $A \cap B=\{1,3,4,5,6,7,9,12,14\}$
b. $A \cap B=\{3,4,9\}$
c. $A \cap B=\{ \}$
d. $A \cap B=\{3,4,5,9\}$
\qquad 31. Use the Venn diagram to find $A \cup B$.

a. $A \cup B=\{3,4,9\}$
b. $A \cup B=\{ \}$
c. $A \cup B=\{1,5,6,7,12,14\}$
d. $A \cup B=\{1,3,4,5,6,7,9,12,14\}$
\qquad 32. Use the Venn diagram to find any subsets.

\qquad 33. Use the Venn diagram to find $L \cap M$.

a. $L \cap M=\varnothing$
b. $L \cap M=\{x \mid x>8\}$

c. $L \cap M=\{x \mid x>2\}$
d. $L \cap M=\{x \mid x<-3\}$
34. Determine whether the first set is a subset of the second set. Use the correct symbol.
$N=\{$ counting numbers $\}$
$W=\{$ whole numbers $\}$
a. $\quad N \subset W$
b. $N \not \subset W$
35. Determine whether the first set is a subset of the second set. Use the correct symbol. $Q=\{$ rational numbers $\}$
$Z=\{$ integers $\}$
a. $Q \subset Z$
b. $Q \not \subset Z$
36. Determine whether the first set is a subset of the second set. Use the correct symbol.
$H=\{-5,-1,3,7,15\}$
$P=\{$ positive integers $\}$
a. $H \subset P$
b. $H \not \subset P$
37. Determine whether the first set is a subset of the second set. Use the correct symbol.
$G=\left\{-\frac{4}{5}, 1,2 \frac{1}{3}, 9 \frac{7}{11}, 12\right\}$
$Q=\{$ rational numbers $\}$
a. $G \subset Q$
b. $G \not \subset Q$
38. Find the intersection of the sets.
$H=\{2,4,6,8\}$
$G=\{0,1,2,3\}$
a. $H \cap G=\{ \}$
b. $H \cap G=\{2,4\}$
c. $H \cap G=\{2\}$
d. $H \cap G=\{0,2,6\}$
39. Find the intersection of the sets.
$Q=\{$ rational numbers $\}$
$R=\{$ real numbers $\}$
a. $Q \cap R=R$
b. $Q \cap R=Q$
c. $Q \cap R=\{ \}$
d. $Q \cap R=\{$ irrational numbers $\}$
40. Find the intersection of the sets.
$S=\{x \mid x<8\}$
$T=\{x \mid x>3\}$
a. $S \cap T=\{x \mid 8<x<3\}$
b. $S \cap T=\{x \mid 3<x<8\}$
c. $S \cap T=\{x \mid x<8\}$
d. $S \cap T=$ \{real numbers $\}$
41. Find the union of the sets.
$Q=\{$ rational numbers $\}$
$Z=\{$ integers $\}$
a. $Q \cup Z=Z$
b. $Q \cup Z=$ \{real numbers $\}$
c. $Q \cup Z=\{ \}$
d. $Q \cup Z=Q$
42. Find the union of the sets.
$M=\{8,10,12,14\}$
$P=\{10,11,12\}$
a. $M \cup P=\{10,12\}$
b. $M \cup P=\varnothing$
c. $M \cup P=\{8,10,11,12,14\}$
d. $M \cup P=\{8,10,12,14\}$
43. Find the union of the sets.
$H=\{-9,-7,-5,-3\}$
$O=$ \{odd integers $\}$
a. $H \cup O=(-9,-7,-5,-3)$
b. $H \cup O=$ \{odd integers $\}$
c. $H \cup O=\{ \}$
d. $H \cup O=\{$ integers $\}$
44. Find the union of the sets.
$J=\{x \mid x>4\}$
$Y=\{x \mid x \leq 10\}$
a. $J \cup Y=$ real numbers $\}$
b. $J \cup Y=\{x \mid 4<x \leq 10\}$
c. $J \cup Y=\{ \}$
d. $J \cup Y=$ \{rational numbers $\}$
45. A lawn specialist measured the average temperature during different growing periods and the amount that the grass grew during each period. The scatter plot shows the results of his study. Based on this plot, which is the best prediction for the growth that would occur if the temperature were $55^{\circ} \mathrm{F}$?

Average temperature (${ }^{\circ} \mathbf{F}$)
a. 14 centimeters
b. 5.6 centimeters
c. 10 centimeters
d. 17.5 centimeters
46. Plot the data and find a line of best fit.

\boldsymbol{x}	3	6	5	2	7	4	8	1
\boldsymbol{y}	-0.5	1.5	2.5	-0.5	1.5	1.5	4	0

a.

c.

b.

d.

47. Lionel observes that traffic is getting worse and it takes him longer to get to work. He records once a week the following data for several weeks. Find a line of best fit. Use the equation of the line to predict how long it will take him to get to work in Week 10.

Week	1	2	3	4	5	6	7	8
Time (min)	8.4	7.3	9.2	8.1	10	8.9	8.8	9.7

a.

$y=0.4 x+7 \mathrm{c}$.

It will take him about 11 minutes to get to work in Week 10.
It will take him about 14 minutes to get to work in Week 10.
b.

$y=1.2 x+4$
It will take him about 16 minutes to get to work in Week 10.
d.

$y=1.2 x+7$
It will take him about 19 minutes to get to work in Week 10.
48. The table shows the time it takes for a candle to burn. Plot the data on a graph. Then write the equation of a line of best fit and graph the line.

Time (min)	0	20	30	40	50
Height (in)	8	6.5	6	5	3.5

a.

$$
y=-0.075 x+7.9
$$

b.

$$
y=-0.19 x+10
$$

c.

$$
y=-0.06 x+7.9
$$

d.

49. In the figure, the angles are formed by a transversal and two parallel lines. Which angles seem to be congruent?

a. $\angle 1 \cong \angle 3 \cong \angle 5 \cong \angle 7$;
c. $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$;
$\angle 2 \cong \angle 4 \cong \angle 6 \cong \angle 8$
$\angle 5 \cong \angle 6 \cong \angle 7 \cong \angle 8$
b. $\angle 1 \cong \angle 4 \cong \angle 5 \cong \angle 8$;
d. $\angle 1 \cong \angle 2 \cong \angle 5 \cong \angle 6$;
$\angle 2 \cong \angle 3 \cong \angle 6 \cong \angle 7$
$\angle 3 \cong \angle 4 \cong \angle 7 \cong \angle 8$
50. The angles are formed by a transversal and two parallel lines. Which angles seem to be congruent?

a. $\angle 1 \cong \angle 3 \cong \angle 5 \cong \angle 7$;
c. $\angle 1 \cong \angle 2 \cong \angle 5 \cong \angle 6$;
$\angle 2 \cong \angle 4 \cong \angle 6 \cong \angle 8$
$\angle 3 \cong \angle 4 \cong \angle 7 \cong \angle 8$
b. $\angle 1 \cong \angle 4 \cong \angle 5 \cong \angle 8$;
d. $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$;
$\angle 5 \cong \angle 6 \cong \angle 7 \cong \angle 8$
\qquad 51. The angles are formed by a transversal and two parallel lines. Which angles seem to be congruent?

a. $\angle 1 \cong \angle 2 \cong \angle 5 \cong \angle 6$;
c. $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$;
$\angle 3 \cong \angle 4 \cong \angle 7 \cong \angle 8$
$\angle 5 \cong \angle 6 \cong \angle 7 \cong \angle 8$
b. $\quad \angle 1 \cong \angle 4 \cong \angle 5 \cong \angle 8$;
d. $\quad \angle 1 \cong \angle 3 \cong \angle 5 \cong \angle 7$;
$\angle 2 \cong \angle 4 \cong \angle 6 \cong \angle 8$
52. The angles are formed by a transversal and two parallel lines. Which angles seem to be congruent?

a. $\quad \angle 1 \cong \angle 4 \cong \angle 5 \cong \angle 8$;
c. $\quad \angle 1 \cong \angle 3 \cong \angle 5 \cong \angle 7$;
$\angle 2 \cong \angle 3 \cong \angle 6 \cong \angle 7$
$\angle 2 \cong \angle 4 \cong \angle 6 \cong \angle 8$
b. $\quad \angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$;
d. $\angle 1 \cong \angle 2 \cong \angle 5 \cong \angle 6$;
$\angle 3 \cong \angle 4 \cong \angle 7 \cong \angle 8$
53. In the figure, line $m \|$ line n. Find the measure of $\angle 4$.

a. 63°
b. 117°
c. 27°
d. 153°
54. In the figure, line $m \|$ line n. Find the measure of $\angle 1$.

a. 117°
b. 27°
c. 153°
d. 63°
55. In the figure, line $m \|$ line n. Find the measure of $\angle 7$.

a. 63°
b. 27°
c. 117°
d. 153°
\qquad 56. In the figure, line $g \|$ line h. Find the measure of $\angle 4$.

a. 19°
b. 161°
c. 29°
d. 151°
57. In the figure, line $g \|$ line h. Find the measure of $\angle 2$.

a. 161°
b. 29°
c. 151°
d. 19°
\qquad 58. In the figure, line $g \|$ line h. Find the measure of $\angle 6$.

a. 19°
b. 151°
c. 161°
d. 29°
59. In the figure, line $d \|$ line c. Find the measure of $\angle 5$.

a. 36°
b. 144°
c. 26°
d. 154°
60. In the figure, line $d \|$ line c. Find the measure of $\angle 3$.

a. 144°
b. 36°
c. 26°
d. 154°
61. In the figure, line $d \|$ line c. Find the measure of $\angle 7$.

a. 144°
b. 36°
c. 154°
d. 26°
62. Find $\mathrm{m} \angle A B C$.

a. $\mathrm{m} \angle A B C=40^{\circ}$
b. $\mathrm{m} \angle A B C=45^{\circ}$
c. $\mathrm{m} \angle A B C=35^{\circ}$
d. $\mathrm{m} \angle A B C=50^{\circ}$

